Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Ufuk Çoruh, ${ }^{\text {a }}{ }^{*}$ Nesuhi Akdemir, ${ }^{\text {a }}$ Erbil Ag̃ar, ${ }^{\text {a }}$ Ezequiel M.
Vázquez-López ${ }^{\text {b }}$ and Ahmet Erdönmez ${ }^{\text {a }}$

${ }^{\text {a }}$ Ondokuz Mayıs University, Art and Science Faculty, Department of Physics, 55139 Samsun, Turkey, and ${ }^{\text {b }}$ Departamento de Química Inorgánica, Facultade de Ciencias-Química, Universidade de Vigo, 36200-Vigo, Galicia, Spain

Correspondence e-mail: ucoruh@hotmail.com

Key indicators

Single-crystal X-ray study
$T=293 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.007 \AA$
R factor $=0.046$
$w R$ factor $=0.154$
Data-to-parameter ratio $=17.5$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2002 International Union of Crystallography Printed in Great Britain - all rights reserved

4,4'-[2,2'-(Piperidine-1,4-diyldiethylene)di(tosylimino)]diphthalonitrile

The title compound, $\mathrm{C}_{38} \mathrm{H}_{36} \mathrm{~N}_{8} \mathrm{O}_{4} \mathrm{~S}_{2}$, has a center of symmetry and the central six-membered ring shows a chair conformation. The dihedral angle between the ring carrying the tosyl group and the phthalonitrile ring is $36.98(11)^{\circ}$. The crystal structure is stabilized by an intramolecular $\mathrm{C}-\mathrm{H} \cdots \mathrm{N}$ and two intermolecular $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ close contacts.

Comment

The title compound, (I), is a precursor in the synthesis of network phthalocynine polymers (Ag̃ar et al., 1995). For many years, phthalocyanines have attracted continued interest in various research fields, such as chemical sensors, electrochromism, batteries, photodynamic therapy, semiconductive materials, liquid crystals and non-linear optics (Leznoff \& Lever, 1989-1996; McKeown, 1998).

(I)

The atom-numbering scheme and a displacement ellipsoid plot of (I) are shown in Fig. 1. The geometry of the S atoms is distorted from the tetrahedral configuration, with the largest deviation in the $\mathrm{O}-\mathrm{S}-\mathrm{O}$ angle $\left[\mathrm{O} 1-\mathrm{S} 1-\mathrm{O} 2=120.41(18)^{\circ}\right]$ and the angles $\mathrm{O} 1-\mathrm{S} 1-\mathrm{N} 3$ and $\mathrm{O} 2-\mathrm{S} 1-\mathrm{N} 3[107.37$ (18) and $106.16(18)^{\circ}$, respectively]. The S1-N3 distance is 1.628 (3) \AA, very close to those in the literature (Işık et al. 1999) and in contrast with the previously observed range of $1.63-1.69 \AA$ (Kálmán et al., 1981; Öztürk et al., 2000). This shortening is due to the electron-withdrawing character of the diphthalonitrile group, as in 10,11-dibromo-3,6-ditosyl-3,6-diazabicyclo-[6.4.0]dodeca-1(8),9,11-triene (Işık et al., 1999).

The $\mathrm{S} 1-\mathrm{C} 13$ bond distance and average $\mathrm{S}=\mathrm{O}$ bond length are 1.765 (4) and 1.433 (3) Å, respectively. The bond lengths in the literature (Öztürk et al., 2000) are 1.742 (6) and $1.430(5) \AA$, respectively. The $\mathrm{C} 1 \equiv \mathrm{~N} 1$ and $\mathrm{C} 2 \equiv \mathrm{~N} 2$ bond distances are 1.130 (5) and 1.142 (5) \AA, respectively, and show $\mathrm{N} \equiv \mathrm{C}$ triple-bond character. The ring composed of atoms C 18 ,

Received 8 July 2002 Accepted 10 July 2002 Online 19 July 2002

Figure 1
A view of (I) with the atomic numbering scheme. Displacement ellipsoids are drawn at the 50% probability level.

C19 and N4 and their symmetry equivalents is almost in a chair conformation. The crystal structure of (I) is stabilized by the intramolecular $\mathrm{C} 7-\mathrm{H} 7 \cdots \mathrm{~N} 4$ interaction, and the intermolecular $\mathrm{C} 15-\mathrm{H} 15 \cdots \mathrm{O} 1^{\mathrm{i}}$ and $\mathrm{C} 18-\mathrm{H} 18 A \cdots \mathrm{O} 2^{\text {ii }}$ close contacts (see Table 2 for details and symmetry code).

Experimental

1,4-Bis[N-(2-tosylaminoethyl)]-1,4-diazacyclohexane (13.16 g , 27.42 mmol ; Hancock et al., 1990) was dissolved in dry dimethyl sulfoxide (150 ml) under nitrogen and 4-nitrophthalonitrile (10.11 g , 58.43 mmol) was added. After stirring for 30 min , finely ground anhydrous $\mathrm{K}_{2} \mathrm{CO}_{3}(19.73 \mathrm{~g}, 142.97 \mathrm{mmol})$ was added portionwise over a period of 2 h with efficient stirring. The reaction mixture was stirred under nitrogen at room temperature for 24 h . Water was then added and the product filtered off and washed with water until the filtrate was neutral. The product was then refluxed in methanol, filtered and dried. The title compound, (I), was crystallized from dimethylformamide via slow evaporation at room temperature (yield 8.13 g , 40.51%). Analysis calculated for $\mathrm{C}_{38} \mathrm{H}_{36} \mathrm{~N}_{8} \mathrm{O}_{4} \mathrm{~S}_{2}$: C 62.28, H 4.95, N 15.29%; found: C 62.65, H 4.93 , N 15.44%. Full IR, ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectral data have been deposited elsewhere (Çelebi, 2002).

Crystal data

$\mathrm{C}_{38} \mathrm{H}_{36} \mathrm{~N}_{8} \mathrm{O}_{4} \mathrm{~S}_{2}$
$M_{r}=732.89$
Monoclinic,,$P 2_{1} / c$
$a=8.4238(11) \AA$
$b=29.217(4) \AA$
$c=7.7120(11) \AA$
$\beta=98.052(3)^{\circ} \AA^{\circ} \AA^{3}$
$V=1879.4(5) \AA^{3}$
$Z=2$
$D_{x}=1.295 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation
Cell parameters from 9948 reflections
$\theta=1.4-28.0^{\circ}$
$\mu=0.19 \mathrm{~mm}^{-1}$
$T=293$ (2) K
Prism, colourless
$0.21 \times 0.19 \times 0.06 \mathrm{~mm}$

Data collection

Bruker CCD area-detector diffractometer
φ and ω scans
Absorption correction: none
9948 measured reflections
4124 independent reflections

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.046$
$w R\left(F^{2}\right)=0.154$
$S=0.72$
4124 reflections
235 parameters
1241 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.078$
$\theta_{\text {max }}=28.0^{\circ}$
$h=-10 \rightarrow 11$
$k=-33 \rightarrow 38$
$l=-10 \rightarrow 9$

H-atom parameters constrained
$w=1 /\left[\sigma^{2}\left(F_{o}^{2}\right)+(0.0613 P)^{2}\right]$
where $P=\left(F_{o}^{2}+2 F_{c}^{2}\right) / 3$
$(\Delta / \sigma)_{\max }<0.001$
$\Delta \rho_{\max }=0.22 \mathrm{e} \AA^{-3}$
$\Delta \rho_{\min }=-0.19 \mathrm{e}^{-3}$

Table 1
Selected geometric parameters ($\left({ }^{\circ},{ }^{\circ}\right)$.

N3-C6	$1.440(5)$	$\mathrm{C} 10-\mathrm{C} 9$	$1.499(6)$
N3-C16	$1.465(5)$	$\mathrm{N} 4-\mathrm{C} 19$	$1.453(4)$
N3-S1	$1.628(3)$	$\mathrm{N} 4-\mathrm{C} 17$	$1.456(4)$
S1-O1	$1.429(3)$	$\mathrm{N} 4-\mathrm{C} 18$	$1.456(5)$
$\mathrm{S} 1-\mathrm{O} 2$	$1.438(3)$	$\mathrm{C} 1-\mathrm{N} 1$	$1.130(5)$
$\mathrm{S} 1-\mathrm{C} 13$	$1.765(4)$	$\mathrm{N} 2-\mathrm{C} 2$	$1.142(5)$
$\mathrm{C} 16-\mathrm{C} 17$	$1.523(5)$		
$\mathrm{C} 6-\mathrm{N} 3-\mathrm{C} 16$	$118.3(3)$	$\mathrm{O} 2-\mathrm{S} 1-\mathrm{N} 3$	$106.16(18)$
$\mathrm{C} 6-\mathrm{N} 3-\mathrm{S} 1$	$119.0(3)$	$\mathrm{O} 1-\mathrm{S} 1-\mathrm{C} 13$	$106.8(2)$
$\mathrm{C} 16-\mathrm{N} 3-\mathrm{S} 1$	$120.8(3)$	$\mathrm{O} 2-\mathrm{S} 1-\mathrm{C} 13$	$109.1(2)$
$\mathrm{O} 1-\mathrm{S} 1-\mathrm{O} 2$	$120.41(18)$	$\mathrm{N} 3-\mathrm{S} 1-\mathrm{C} 13$	$106.16(17)$
$\mathrm{O} 1-\mathrm{S} 1-\mathrm{N} 3$	$107.37(18)$		

Table 2
Hydrogen-bonding geometry $\left(\AA^{\circ},^{\circ}\right)$.

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{C} 7-\mathrm{H} 7 \cdots \mathrm{~N} 4$	0.93	2.95	$3.319(5)$	105
$\mathrm{C} 15-\mathrm{H} 15 \cdots 1^{\mathrm{i}}$	0.93	2.69	$3.559(5)$	155
$\mathrm{C} 18-\mathrm{H} 18 A \cdots \mathrm{O}^{\mathrm{ii}}$	0.97	2.60	$3.248(5)$	123

Symmetry codes: (i) $x-1, y, z$; (ii) $x, y, z-1$.
All H atoms were positioned geometrically and refined using a riding model, fixing the aromatic $\mathrm{C}-\mathrm{H}$ distance at $0.93 \AA$, the methylene $\mathrm{C}-\mathrm{H}$ distance at $0.97 \AA$ and methyl-group $\mathrm{C}-\mathrm{H}$ distance at $0.96 \AA$.

Data collection: SMART (Bruker, 1998); cell refinement: SAINT (Bruker, 1998); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 (Farrugia, 1997) and PLATON (Spek, 1990); software used to prepare material for publication: SHELXL97 and PARST (Nardelli, 1995).

The authors thank Ezequiel M. Vázquez-López for data collection and collaboration.

References

Ag̃ar, E., Şaşmaz, S., Batı, B. \& Özdemir, M. (1995). Synth. React. Inorg. Met. Org. Chem. 25, 1165-1167.
Bruker (1998). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
Çelebi, T. (2002). MSc Thesis, Ondokuz Mayıs University, The Institute of Science, 55139 Samsun, Turkey.
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
Hancock, R. N., Ngwenya, M. P., Evers, A., Wade, P. W., Boeyens, J. C. A. \& Dobsan, S. M. (1990). Anorg. Chem. 29, 264-270.
Işık, Ş., Öztürk, S., Fun, H.-K., Ag̃ar, E. \& Şaşmaz, S. (1999). Acta Cryst. C55, 1850-1852.
Kálmán, A., Czugler, M. \& Argay, G. (1981). Acta Cryst. B37, 868-877.
Leznoff, C. C. \& Lever, A. B. P. (1989-1996). Phthalocyanines: Properties \& Applications, Vols. 1, 2, 3 and 4. Weinheim \& New York: VHC Publishers Inc.
McKeown, N. B. (1998). Phthalocyanine Materials: Synthesis, Structure and Function. Cambridge University Press.
Nardelli, M. (1995). J. Appl. Cryst. 28, 659.
Öztürk, S., Işık, Ş., Ag̃ar, E., Şaşmaz, S., Fun, H.-K. \& Erdönmez, A. (2000). Spectrosc. Lett. 33, 245-254.
Sheldrick, G. M. (1997). SHELXL97 and SHELXS97. University of Göttingen, Germany.
Spek, A. L. (1990). Acta Cryst. A46, C-34.

